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Abstract

High harmonic generation (HHG) is an ideal probing source. In general, all harmonics are coupled with the

corresponding input laser when generated, and for applications, they are separated using additional spectrometers.

Herein, we report the angular isolation of relativistic harmonics at a predicted emission angle upon generation and,

most importantly, a new phase-matching chain selection rule is derived to generate harmonics. Based on the laser

plasma mechanism involving two non-collinear relativistic driving lasers, the nth harmonic carrying the information

of both input lasers originates from its adjacent (n – 1)th harmonic coupled with one of the input lasers. Meanwhile,

the intensity and emission angle of the generated isolated harmonic are both greatly increased compared with those

in the gas scheme. These results are satisfactorily verified by theoretical analysis and three-dimensional particle-in-cell

simulations, which have physical significance and are essential for practical applications.
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1. Introduction

Conventionally, nonlinear media are employed to transform

the fundamental frequency of the input laser to those of

high harmonics to obtain extreme ultraviolet and even

X-ray beams using table-top lasers[1,2]. High harmonic

generation (HHG), as an ideal tool, can be applied in

probing electronic dynamics on the atomic or molecular

scale, microscale imaging, etc. Gases or metals are utilized

to generate high-order harmonics for lasers with intensities

around 1014–16 W/cm2[3–7], and a plasma target is ideal for

lasers with much higher intensities, i.e., approximately or

over 1018 W/cm2[8–15]. In general, all harmonics couple

with the input laser(s), and they are not separated outside

the interaction domain[16-20]; consequently, additional

spectrometers are usually utilized to separate a specific-

order harmonic for application[21-23]. Angular separation
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of high harmonics from solid plasma targets has been

achieved experimentally in a single-beam scheme by

using grating targets[24]. Enhancement of harmonics in

the grating scheme via surface plasmon excitation has

also been demonstrated[25]. On the other hand, angularly

isolated high harmonics from a gas jet were first reportedly

generated by two overlapping 1014 W/cm2 non-collinear

laser beams[22]. This non-collinear HHG geometry presents

numerous advantages[22,26-29], including the separation of

the harmonics from the pump beams, angular separation

of different order harmonics, generation of high-energy

photons, and production of isolated attosecond bursts.

Evidently, this HHG process meets the phase-matching

requirement, which stipulates that the output momentum

of an nth-order harmonic photon (kn) is only related to

the momentum of the input photons (k1 and k2) by the

momentum conservation principle, kn = n1k1 + n2k2, where

n1 and n2 are the numbers of photons absorbed from each of

the input beams, and n = n1 + n2
[22,23,30]. As far as we know,

all this interesting research is based on the gas ionization

process, where the laser intensity is generally below 1016
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Figure 1. Schematic of the chain selection rule for the proposed approach. Two laser pulses a1(ω) and a2(ω), irradiate a thin foil symmetrically at a large

crossing angle 2θ , considering the normal direction of the target surface. High-order harmonics are emitted at different spatial locations at an angle α,

which is determined by the conservation of energy and linear momentum through the chain selection rule. This chain selection rule is demonstrated by the

phase-matching schemes (a) and (b).

W/cm2
, and the crossing angle is small enough to ensure

adequate interaction.

In this study, based on a different HHG mechanism, we

propose an approach for generating intense isolated harmon-

ics through the interaction between relativistic lasers and

a plasma target, but with a quite different phase-matching

selection rule. In our approach, two relativistic laser pulses

impinge on a solid thin foil at an angle. The generated intense

harmonics are naturally separated from each other and from

the input beams at considerably large angles, which can be

predicted. The proposed approach offers several exclusive

benefits. First and most importantly, both our theoretical

analysis and three-dimensional particle-in-cell (3D PIC)

simulations prove that the nth harmonic carrying the infor-

mation of both input lasers is converted by its adjacent (n –

1)th harmonic which has the smallest crossing angle with

the nth harmonic owing to the highest occurrence possibility

and one fundamental input beam, rather than directly by the

two input beams in the gas HHG case. That is, considering

phase matching, the output momentum (emission direction)

of an nth-order harmonic photon depends on the momentum

of the (n – 1)th-order harmonic photon and that of one input

laser photon, according to the momentum conservation,

kn = kn–1 + k1(2), for the input beams with the same wave-

length. Second, plasma, as a nonlinear medium, can endure

lasers nearly without the intensity limitation. Therefore, the

intensity of isolated harmonics can be in the relativistic

region[31,32]. Finally, because the crossing angle between the

input lasers can be sufficiently large, the individual harmonic

can be emitted at an angle nearly two orders of magnitude

higher than that (usually in the milliradian level) in gas

HHG. This point is very important for the measurement and

application of this method in experiments. It should be noted

that a large number of papers on the selection rule for the

plasma HHG in terms of the oscillating mirror model, first

proposed by Bulanov et al.[9] and then studied extensively

by Lichters et al.[10], have been published. All of them are

about a single incident laser or collinear incident lasers, and

all of harmonics are coupled spatially. The problems such as

proper phase matching do not exist. However, in our case,

the harmonic emission is determined by the phase-matching

relation and hence isolated angularly.

2. Theoretical analysis

The proposed scheme is shown in Figure 1. Two circularly

polarized (CP) laser pulses a1 and a2 impinge on a solid

thin foil symmetrically at a large crossing angle 2θ . For

simplification, two identical input pulses with the same

frequency (ω) are considered, and the angle θ = π /4 is the

incident angle of each laser pulse. The electrons in the target

experience the overlapped fields in the thin foil and oscillate.

The harmonics radiated from the oscillating electrons are

isolated angularly and propagate in the reflected side and

also in the transmitted side if the target is sufficiently thin.

The total normalized laser amplitude acting on the target is

a = a1+a2 (a = eA/mec2, where A is the vector potential, c is

the speed of light in vacuum, me is the electron mass, and e

is the electron charge), where a1 and a2 are the driving laser
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beams used as

a1 = a0[sin(ωt − kxcosθ − kysinθ)

× (
⌢
y cosθ −⌢

x sinθ)+ cos(ωt − kxcosθ − kysinθ)
⌢
z ],

a2 = a0[sin(ωt − kxcosθ + kysinθ)

× (
⌢
y cosθ +⌢

x sinθ)± cos(ωt − kxcosθ + kysinθ)
⌢
z ],

(1)

respectively, for the cases of counter-rotation and same-

rotation CP beams, denoted by “–” and “+” in the expression

of a2, a0 is the peak amplitude, and k is the wavenumber. The

transverse components of the laser amplitude acting on the

target (with x indicating the longitudinal direction) can be

written as

aCR⊥ ∼ sin(ωt − kxcosθ)

× [cosθ cos(kysinθ)
⌢
y + sin(kysinθ)

⌢
z ],

aSR⊥ ∼ cos(kysinθ)

× [cosθ sin(ωt − kxcosθ)
⌢
y + cos(ωt − kxcosθ)

⌢
z ],

(2)

for the counter-rotation and same-rotation cases, respec-

tively. This expression for counter-rotation CP pulses shows

a linearly polarized laser pulse. According to the γ -spikes

theory of the relativistic oscillating mirror model[11,33], har-

monics can be efficiently generated in this case. Conversely,

for same-rotation CP pulses, the superposed transverse field

acting on the electrons is similar to that of a CP laser

pulse; thus, the harmonics are expected to be considerably

weak and even negligible. For a clear demonstration, we

select the counter-rotation case for the harmonics analysis.

The ponderomotive force causes longitudinal oscillations of

the surface at twice the fundamental frequency. By further

combining the longitudinal component with the laser fre-

quency (ω) owing to the oblique incidence, both even and

odd harmonics are generated[10,34].

As an example, we adopt the z component of the

input fields, az = a1z + a2z, which is related to the

harmonics, to analyze the HHG process. Here a1z =
cos(ωt − kxcosθ − kysinθ)

⌢
z and a2z = −cos(ωt − kx

cosθ + kysinθ)
⌢
z . The nonlinear part, az/γ (where γ =√

1+a2), in Maxwell’s equation, ∇2a − ∂2a/∂t2 = naz/γ ,

contributes to the harmonic generation (where n is the

particle density). After the Fourier expansion of this source

term, we can derive the expressions for the harmonics

generated, as follows:

{

cos
[

2m(ωt − kxcosθ)+ωt − kxcosθ − kysinθ
]

+cos
[

2m(ωt − kxcosθ)+ωt − kxcosθ + kysinθ
]}⌢

z,

(3)

which can be simplified as ∼ [cos(m · 2ωxt + ωa1zt) +
cos(m · 2ωxt + ωa2zt)]

⌢
z , where ωxt ∼ (ωt − kxcosθ),

ωa1(2)zt ∼ (ωt − kxcosθ ∓ kysinθ), and m = 0, 1, 2, . . ..

This term highlights the selection processes for generating

harmonics. That is, some odd harmonics are produced by

the even harmonics propagating in the x direction coupled

with the input laser a1 or a2, such as the third and fifth

harmonics, as shown in Figure 1. Based on this, we can

infer that each harmonic carrying the information of both

input lasers is formed by lower-order harmonics coupled

with one of the input lasers. The expected chain selection

rule for the generation of harmonics is shown in Figure

1 and the corresponding phase matching schemes are

demonstrated in detail in Figures 1(a) and 1(b). Basically,

for n = 2m order harmonics, one photon of which stems

from m photons of a1 and m photons of a2, the propagating

direction is normal to the target (emission angle α = 0), and

the coordinate in k-space is (n, 0). Otherwise, one photon

of the nth-order harmonic is transformed by one photon

of its adjacent (n – 1)th-order harmonic, which has the

smallest crossing angle with the nth harmonic owing to the

highest occurrence possibility, and one photon of the input

laser. According to this chain selection rule, the emission

angle αn and the coordinate (knx, kny) in k-space can be

predicted by

tanαn = sinθ+(n−1)sinαn−1

cosθ+(n−1)cosαn−1
,

(

knx,kny

)

= (ncosαn,nsinαn) .
(4)

We verify this rule in the following section using 3D PIC

simulations, which are also considered as numerical experi-

ments.

3. 3D PIC simulations

The PIC simulation configuration is shown in Figure 2(a).

The simulations are carried out using the EPOCH code[35].

Two CP laser pulses, a1 and a2, with the same frequency ω

(the corresponding wavelength λ =1 µm) reach the target at

the same angle θ= π /4 symmetrically. A peak normalized

amplitude (a0) of 3 and a focal spot size of 5 µm are

used. The laser profile is sin2
[

π t/(2t0)
]

, where t0 = 7T

and T is the period of the input laser. The simulation box

is 20 µm (x) × 40 µm (y) × 40 µm (z), corresponding to a

window with 1000 × 1000 × 1000 cells and one particle per

cell. A thin foil with a thickness of 1 µm and a density

of n0 = 20nc, is employed, where nc = 1.1 × 1021 cm−3

is the critical density for the input laser pulse. Here we

note this thin foil is plasma which is initially solid and

ionized by the laser pedestal. At t = 0, the laser pulses

enter the simulation box. Considering that the harmonics

in the reflected direction are more intense, we focus our

analysis on the harmonics in the reflected side from the

simulations. As shown in Figure 2(b), where the fundamental

frequency components are filtered out, harmonics containing
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Figure 2. (a) Configuration of the PIC simulation box. The input laser field distribution before the lasers strike the target. (b) Electric field (Ez) distribution

of the harmonics for two counter-rotation CP lasers after the lasers are reflected completely from the target, where the fundamental components are filtered

out. The dashes denote the location of the target. The field is normalized to E0 = meω0c/e (3.2×1012 V/m).

Figure 3. The spectrum distribution of harmonics in k-space correspond-

ing to that in Figure 2(b). Here 2ω11 is the second harmonic in the direction

normal to the target; 3ω30, 3ω21, 3ω12, and 3ω03 are the third harmonics

emitted in different directions; 4ω40, 4ω31, 4ω22, 4ω13, and 4ω04 are the

fourth harmonics emitted in different directions; and 5ω32 and 5ω23 are

the fifth harmonics emitted in different directions. The small white circles

indicate the harmonics derived from the new phase matching selection rule

Equation (4). The blue dashed lines indicate that same order harmonics in

different directions have the same wavenumber.

the information of two input pulses are emitted in the

reflected side, and they are much more intense than those in

the same-rotation case (see Figure s1 in the Supplementary

Material).

Figure 3 shows the spectrum distribution of the harmonics

in k-space after the Fourier transformation of the reflected

electric field, Ez, in Figure 2(b). As expected, the harmonics

include odd and even orders in the reflected directions. The

harmonic locations marked with the small white circles in

Figure 3 are obtained from Equation (4), showing the good

agreement with the simulation results. Harmonics such as

2ω20, 3ω30, 4ω40, 2ω02, 3ω03, and 4ω04 only contain the

information of one input laser pulse and propagate along

the incident directions. Here we focus on the harmonics

containing the information of both input laser pulses. They

are generated and angularly isolated, including 2ω11 of the

second harmonic, 3ω21 and 3ω12 of the third harmonics, and

4ω22, 4ω31, and 4ω13 of the fourth harmonics, as shown in

Figure 3. The propagating directions of these harmonics are

determined by vector addition according to their generation

way, in which the phase-matching rule should be satisfied.

For example, there are four ways to generate the third

harmonics in the photon picture according to energy con-

servation, i.e., 3ω=3×1ω (a1), 3ω=3×1ω (a2), 3ω=2ω+1ω

(a1), 3ω=1ω (a2) +2ω. However, it implies there are four

different emission directions, as shown with 3ω30, 3ω03,

3ω21, and 3ω12 in Figure 3, because of the different phase-

matching relation. Harmonics 3ω30 or 3ω03, are undoubtedly

emitted along the incident directions because only one linear

momentum is related. However, for the other two ways, it is

questionable that the photon with an energy of 2ω originates

from 2ω20, 2ω02, or 2ω11. Taking 3ω21 as an example, each

photon of 3ω21 may be transformed by one photon of a1 and

one photon of 2ω11, or by one photon of a2 and one photon of

2ω02 (this selection rule is the same as that in non-collinear

gas HHG). For the former, according to Equation (4), the

coordinate of 3ω21 in the k-spectrum distribution should be

(2.9, 0.76), and the emission angle (α) should be 0.25 rad.

Conversely, for the latter, the coordinate of 3ω21 in the k-

spectrum distribution should be (2.85, 0.95), and the emis-

sion angle should be 0.32 rad. The former selection rule is

evidenced by the PIC simulations, as shown in Figure 3. In

addition, according to our chain selection rule, each photon

of 4ω31 should be transformed by one photon of a1 and

one photon of 3ω21, and its coordinate in the k-spectrum

distribution is expected to be (3.71, 1.5) and the emission

angle 0.37 rad, instead of the (3.58, 1.79) coordinate and

the 0.464 rad emission angle in the gas HHG way (one

photon of a2 and one photon of 3ω30). This expectation is

also confirmed by the simulation result in Figure 3.

To further verify this conclusion, we show the second

harmonic (2ω11), third harmonic (3ω21), and the fourth

harmonic (4ω31) in Figure 4. Figures 4(d)–4(f) demonstrate
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Figure 4. Electric field (Ez) distributions of the (a), (d) second harmonic (2ω11), (b), (e) third harmonic (3ω21), and (c), (f) fourth harmonic (4ω31) in the

(a)–(c) x–y plane at z = 0, and (d)–(f) are the section planes taken along the black dashed lines in (a)–(c).

the electric field distributions of the constant phase

planes, where the emission angle is selected according

to Equation (4). The distributions meet our expectations.

We also note that the intensities of the relatively low-order

harmonics are in the relativistic range in the present a0 = 3

case, with the normalized amplitude around 1, basically

following the high energy conversion efficiency rule in

plasma HHG. The emission angle is about two orders of

magnitude higher than that (usually, in the milliradian level)

in the non-collinear gas HHG.

4. Discussion

Here, two points are elucidated. According to the angular

momentum conservation, the n = 2m order harmonics in the

normal direction should be linearly polarized, because one

photon of such harmonics stems from m photons of a1 and m

photons of a2, and the total spin angular momentum is zero.

The other harmonics are circularly (or elliptically) polarized,

because one photo of such harmonics is transformed by one

photon of its adjacent (n – 1)th-order harmonic and one

photon of the input laser (CP laser). In fact, the PIC sim-

ulation result confirms this point; see the k-space spectrum

distribution of Ey in the Supplementary Material where the

even harmonics in the normal direction are missing. We

also compared these results with those obtained in the cases

of purely linearly polarized incident beams. In the case of

p-polarized laser case, harmonics include both the odd and

even orders in y component. In the case of s-polarized case,

there are only odd order harmonics in z component and

even order harmonics in y component. These results are in

agreement with the conclusion in Ref. [10]. The emission

angle for the same order harmonic is identical with that in the

CP incident lasers case because it is determined by the same

selection rule. Second, phase matching ensures that there is

no wave vector mismatch between the emitted harmonics and

the input beams which contributes to its emission, usually in

the case of small enough crossing angle between the input

beams, and these harmonics at different locations can hardly

be distinguished spatially. However, in the present large

crossing angle geometry, the projection of the input beam

wave vectors along the harmonic emission direction should

be considered, which results in a phase mismatch, expressed

as 1k = kn − kn−1 cos(αn −αn−1) − k1(2) cos (θ −αn). As

demonstrated in Figures 1 and 3, the harmonic wave vector

is slightly larger than the sum of the wave vector projections

of the beams which contributes to the harmonic. In this case,

the phase matching must be accomplished by considering the

whole interaction system including the plasma.

For the HHG from the laser–plasma interaction, one of the

most significant findings is that the roll-off of the harmonic

spectrum exhibits a power-law dependence of Iωn ~ ω-8/3,

and the cutoff frequency increases with the laser intensity by

ωcut-off ~ IL
2.5[11,34]. Our results basically follow these findings

for the same plasma HHG mechanism. Our selection rule

is still valid for the different intensities and crossing angles,

confirmed by additional simulations in the cases of a0 = 0.2,

0.5, 3, 10, 20, 50 when the half crossing angle is π /4

and a0 = 3 when the half crossing angle is π /8 and π /3.

That is, for the same crossing angle, the intensity and cut-

off frequency of the harmonics rise with the input laser

intensity. On the other hand, for the same input lasers, the

superposed electric field acting on electrons in the surface

layer will be strengthened with the decrease of the crossing
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Figure 5. (a) Energy conversion efficiency for the harmonics in the reflected directions. (b) Energy conversion efficiency for the harmonics of the same

order emitted at different angles.

Figure 6. The spectrum distribution of harmonics in k-space after the lasers are reflected completely from the target, where the fundamental components

are filtered out in the cases of (a) a0 =10, (b) a0=20, and (c) a0=50.

angle, which will also enhance the harmonics and extend

the cut-off frequency. According to the simulation results,

we found the conversion efficiency follows the power-law

dependence of ~ω-4.1 as shown in Figure 5(a) for the har-

monics in the reflected directions. For the same order har-

monics emitted at different angles, the conversion efficiency

(intensity) decreases with the emission angle, as shown in

Figure 5(b).

Although the emission angles of the harmonics obtained

from the phase-matching equation agree well with the simu-

lation results, we find a slight angle mismatch, as shown in

Figures 3 and 4. The main reason is the deformation of the

surface plane and Doppler effect of the reflected laser pulse.

If the highly relativistic laser pulse is used, the radiation

pressure dominates in the laser–plasma interaction, and there

will be a curve for the surface electron layer, which may

deflect the reflected pulses and impact the emission angle

slightly. At the same time, red shift effect will occur for

the lasers (harmonics) reflected from the election layer. We

know that the motion velocity of the surface electron layer

increases with the laser intensity and decreases with the

target density, i.e., vp ∝ a/
√

n[36–39]. For the same target

density, the velocity of the surface electron layer increases

with the laser intensity, which broadens the spectrum of the

harmonics. However, for the given high-density target, our

theoretical model is still predictable for the highly relativistic

laser case, though the harmonic spectrum would be slightly

modulated, as shown by the comparison of the results of

different laser intensity cases in Figure 6.

Harmonics can also be modulated angularly directly from

laser irradiated gratings, which has been demonstrated theo-

retically and experimentally. The approach using a single-

beam scheme with grating targets results from the target

(grating) modulation directly. In our approach, by over-

lapping two non-collinear lasers on the plasma target, the

spatial structure of the driving field is imprinted on the

electron dynamics and, hence, on the harmonic generation.

The generated harmonics contain the information of the two

incident laser pulses, and thus one can adjust the incident

lasers for the different harmonic emission. Most importantly,

we found the new phase-selection rule, which is the feature

for the non-collinear plasma HHG mechanism, and the

harmonic emission direction can be obtained. In addition, the

non-collinear plasma HHG process is not limited to mixing

two input beams of the same wavelength. When two-color

input pulses are used, the selection rule is more complicated

because there are additional electron oscillation frequencies

except 1ω and 2ω which determines the HHG process. The

selection rule of the phasing matching to generate harmonics

is similar to what we obtained.

The computational precision in the PIC simulation

may also affect the simulation results, particularly for
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those of order higher than the fourth. We check this by

conducting another two-dimensional (2D) PIC simulation

with 10,000×10,000 grids instead of 1000×1000 for the x×y

window in the aforementioned 3D simulation. Apparently,

there is nearly no difference between the harmonics in this

case and those analyzed earlier (see the k-space spectrum

distribution in the 2D case in the Supplementary Material).

5. Conclusion

In summary, we have proposed an approach, based on the

non-collinear plasma HHG process, for generating angularly

isolated harmonics at large emission angles. When two

counter-rotation CP lasers hit a plasma target at the same

side in V-shape, the harmonics carrying the information

of the two input lasers are isolated. Using the momen-

tum vector addition of photons, the propagating direction

has been obtained. With the present scheme, the origin of

these harmonics radiated in the relativistic laser and plasma

interaction was elucidated for the first time. Both theoret-

ical analysis and 3D PIC simulations confirmed the newly

derived phase-matching selection rule for generating high

harmonics. Thus, it is meaningful for practical applications

and for understanding the plasma HHG process.

Multi-angle imaging is a potential application for these

angularly isolated harmonics. Conventionally, to obtain

more detailed imaging information, more than one laser

pulses with different wavelengths are required to probe

the sample simultaneously from different directions. The

application of multiple pump lasers in an optical band

will challenge the experimental layout and temporal

synchronization. Therefore, angularly isolated multi-

wavelength lasers generated simultaneously using the non-

collinear HHG approach present significant application

promise, particularly in biomedical imaging and material

detection. In addition to such application as the gas harmonic

source, one can extend its application in laser–plasma

interaction, taking advantage of the high intensity of the

plasma harmonic source. Although the plasma harmonic

source has not efficiently been used so far owing to the

strict requirement for the laser condition (intensity, contrast,

etc.), there are some exclusive advantages for this harmonic

source, such as high intensity/flux and large crossing

angle, and this will certainly broaden the application

field. Moreover, with the development of the laser

technique and the experimental skill, the plasma harmonic

source application is expected to flourish in the near

future.

Supplementary Materials

To view supplementary material for this article, please visit

http://dx.doi.org/10.1017/hpl.2021.14.
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